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Abstract—This large-scale study, consisting of 24.5 million
hand hygiene opportunities spanning 19 distinct facilities in 10
different states, uses linear predictive models to expose factors
that may affect hand hygiene compliance. We examine the use
of features such as temperature, relative humidity, influenza
severity, day/night shift, federal holidays and the presence of
new residents in predicting daily hand hygiene compliance. The
results suggest that colder temperatures and federal holidays
have an adverse effect on hand hygiene compliance rates, and
that individual cultures and attitudes regarding hand hygiene
exist among facilities.

Index Terms—Public healthcare, Hand hygiene, Supervised
learning, Linear regression, Event detection

I. INTRODUCTION

Healthcare associated infections represent a major cause

of morbidity and mortality in the United States and other

countries [1]. Although many can be treated, these infections

add greatly to healthcare costs [2]. Furthermore, the emer-

gence of multidrug resistant bacteria have greatly complicated

treatment of healthcare associated infections [3], making the

prevention of these infections even more important. One of the

most effective interventions for preventing healthcare associ-

ated infections is hand hygiene [4]. Yet, despite international

programs aimed at increasing hand hygiene [4], [5], [6], rates

remain low, less than 50% in most cases [4], [6], [7].

Because of the importance of hand hygiene in preventing

healthcare associated infections, infection control programs

are encouraged to monitor rates to encourage process im-

provement [6], [8], [9]. In most cases, hand hygiene mon-

itoring is done exclusively by human observers, which are

still considered the gold standard for monitoring [7]. Yet,

human observations are subject to a number of limitations.

For example, human observers incur high costs and there are

difficulties in standardizing the elicited observations. Also, the

timing and location of observers can greatly affect the diversity

and the quantity of observations [10], [11]. Furthermore, the

distance of observers to healthcare workers under observation

and the relative busyness of clinical units can adversely affect

the accuracy of human observers [11]. The presence of human

observers may artificially increase hand hygiene rates tem-

porarily as the presence of other healthcare workers can induce

peer effects to increase rates [12], [13]. Finally, the number

of human observations possible is quite small in comparison

to the number of opportunities [7], [12]. Several automated

approaches to monitoring have been proposed [8], [14], [15],

[16]. Many of these measure hand hygiene upon entering

and leaving a patient’s room. The subsequent activation of a

nearby hand hygiene dispenser is recorded as a hand hygiene

opportunity fulfilled whereas, if no such activation is observed,

the opportunity is not satisfied. Such approaches, while not

capturing all five moments of hand hygiene, do provide an

easy and convenient measure of hand hygiene compliance.

With automated approaches becoming more common, a more

comprehensive picture of hand hygiene adherence should

emerge, providing new insights into why healthcare workers

abstain from practicing hand hygiene.

II. DATA AND METHODS

A. Hand Hygiene Event Data

Our hand hygiene event data is a proprietary dataset pro-

vided by Gojo Industries. The data were obtained from a

number of installations consisting of door counter sensors,

which increment a counter anytime an individual goes in or

out of a room, and hand hygiene sensors, which increment a

counter when soap or alcohol rub are dispensed. Additional

supporting technology was also installed to collect and record

timestamped sensor-reported counts. In this paper, we will use

the term dispenser event to designate triggering and use of

an instrumented hand hygiene dispenser and door event to

designate the triggering of a counter sensor located on one of

the instrumented doors.

A total of 19 facilities in 10 states were outfitted with

sensors; because of privacy concerns, we provide only the state

and CDC Division for each. The facilities comprise a wide

range of geographies, spanning both coasts, the midwest, and

the south. A total of 1851 door sensors and 639 dispenser sen-

sors reported a total of 24,525,806 door events and 6,140,067
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dispenser events, beginning on October 21, 2013 and ending

on July 7, 2014. Each facility contributed an average of 172.3

reporting days, making this study the largest investigation of

hand hygiene compliance to date (i.e., larger than the 13.1

million opportunities reported in [17]). Assuming each door

event corresponds to a hand hygiene opportunity, we compute

an estimated intra-facility compliance rate of 25.03%, in line

with if not just below the reported low-end rate found in [18].

The original data, consisting of timestamped counts reported

from individual sensors over short intervals, were re-factored

to support our analysis. First, data from each sensor were

binned by timestamp, t, into 12 hour intervals, corresponding

to traditional day and night shifts, as indicated by an additional

variable, nightShift, defined as follows:

nightShift =

{
1 t ε [7pm, 6:59am]

0 t ε [7am, 6:59pm]

Second, door and dispenser counts were aggregated based on

day and night shift so as to produce a series of records. For

each such record we compute hand hygiene compliance, or

just compliance, by dividing the number of reported dispensed

events by the number of door events:

compliance =
# dispenser

# door

Such a definition of compliance assumes that each door

event corresponds to a single hand-hygiene opportunity and

each dispenser event corresponds to a single hand-hygiene
event whereas, in reality, a health care worker might well

be expected to perform hand hygiene more than once per

entry, resulting in rates that exceed one, if only slightly. This

estimator also ignores the placement of doors with respect to

dispensers: multiple dispensers may well be associated with a

single doorway, and some dispensers may be in rooms having

multiple doors. Adding new dispensers will raise apparent

compliance rates, while adding new door sensors will appear

to reduce compliance. Even so, when applied consistently and

if system layouts are fixed, this estimator is a reasonable

approximation of true hand hygiene compliance, and supports

sound comparisons within a facility (but not across facilities).

Because malfunctioning sensors or dead batteries can pro-

duce outliers (i.e., very low or very high values), records

with fewer than 10 door or dispenser events reported per day

(possibly indicating an installation undergoing maintenance),

zero compliance, or compliance values greater than 1 were

removed prior to analysis (at the cost of possibly excluding

some legal records). The remaining data consists of 5308

shifts from the original 5647 records, having 21,273,980 hand

hygiene opportunities and 5,296,749 hand hygiene events (see

Table I).

B. Feature Definitions

In this subsection we define the features (factors) that will

be examined, and how each is derived.

Facility State CDC Div Tot Disp Tot Door Days Rep
91 OH ENC 234292 518772 252
101 OH ENC 350901 2021665 260
105 TX WSC 238899 1940024 260
119 MN WNC 123877 242939 156
123 TX WSC 325618 1112198 243
127 NM Mnt 1306855 4546171 260
135 OH ENC 125731 264331 258
144 CA Pac 398961 1744642 260
145 CA Pac 567096 2073566 260
147 CA Pac 500979 2462900 260
149 CA Pac 590708 2306392 260
153 CT New E 169564 603482 208
155 NY M-At 171275 619507 117
156 NC S-At 4381 38200 15
157 OH ENC 39455 313396 101
163 OH ENC 344 10233 5
168 PA M-At 30421 86909 20
170 IL ENC 112604 353631 47
173 OH ENC 4788 15122 32
Total 10 8 5296749 21273980 3274

TABLE I: Descriptive statistics for all reporting facilities in

terms of state, CDC division, hand hygiene events, people

events, and reporting days.

1) Local Weather Data: Because health care workers fre-

quently cite skin dryness and irritation as a factor in decreased

compliance (particularly in cold weather months where en-

vironmental humidity is reduced), we associate daily air

temperature and relative humidity to each timestamped record

based on each facility’s reported zip code. Spatially assimilated

weather values (σ = 0.995) for the entire globe were obtained

from the National Oceanic and Atmospheric Administration

(NOAA) [19]. Given in terms of grid elements (a tessilation

of bounding boxes covering 2.5
◦

latitude by 2.5
◦

longitude),

the world is thus defined as a 144 by 73 grid having 10512

distinct grid elements. Weather data are available at a fine level

Fig. 1: Assigning (red box) NOAA weather data, reported in

terms of a geographic grid, to health care facilities (red dots),

where the blue color gradient might represent temperature.
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of temporal granularity (on the order of 4 times daily for each

grid unit) for the entire period of interest. The geographical

assignment of weather data was obtained by first mapping each

facility’s numerical zipcode to the zipcode’s centroid (2010

US Census data), given by (latitude,longitude), which was

subsequently mapped to the matching NOAA grid element.

An example of this assignment can be observed in Figure

1. We associate weather information from the 6am reporting

hour with records corresponding to traditional day shifts (7am-

6:59pm) and use the 6pm reporting hour for traditional night

shifts (7pm-6:59am).

2) Influenza Severity: We conjecture that the local severity
of common seasonal diseases, such as influenza, may also

affect hand hygiene compliance rates. We define influenza

severity as the number of influenza-related deaths relative to

all deaths over a specified time interval.

Influenza severity data were obtained from the CDC’s

Morbidity and Mortality Weekly Report (MMWR), which

also reports data at weekly temporal granularity. Rather than

reporting data by CDC region, however, data are provided by

reporting city (one of 122 participating cities, mostly large

metropolitan areas). We map each facility in our dataset to

the closest reporting city in order to associate the appropriate

severity value to each record. In other words

repCity = argmin{dist(facility, cityi) : i = 1, . . . , 122}

where dist(fac, city) � ‖(faclat, faclon), (citylat, citylon)‖2,

the Euclidean distance between two entities given in terms of

(lat, lon) coordinates. Eight of 19 facilities were located in a

reporting city (i.e., dist= 0). The remaining 11 facilities were

mapped to a reporting city that was, on average, 66.2 miles

away (only 3 of 19 facilities were mapped to a reporting city

further than this average, with the largest distance being 142

miles).

3) Temporal Factors: We also conjecture that external

factors associated with specific holidays or events may affect

hand hygiene compliance rates. Holidays may change staffing

rates or affect healthcare worker behaviors in various ways.

The number of visitors (affecting door counter rates) may also

be greater than during regular weekdays. Holidays such as the

4th of July are often associated with alcohol-related accidents,

and may increase health care facility workloads. Such factors

may also be observable during weekends.

We define a new variable holiday that reflects whether a

given shift occurs on one of the 10 federal holidays (New

Year’s Eve, Martin Luther King Day, President’s Day, Memo-

rial Day, the 4th of July, Labor Day, Columbus Day, Veteran’s

Day, Thanksgiving or Christmas):

holiday =

{
0 t /∈ {holidays}
1 t ∈ {holidays}

Similarly, in order to ascertain the impact of weekends on

compliance, we define a new variable weekday as follows:

weekday =

{
0 t ∈ {Sat, Sun}
1 t ∈ {Mon, Tues,Weds, Thurs, Fri}

A related concept is the presence of new resident physicians,

who traditionally start work the first of July. We define a new

variable that corresponds with this time period in order to see

if the data reveal the presence of a July effect:

JulyEffect =

{
0 t /∈ July1−7

1 t ∈ July1−7

C. Exploring Factors Affecting Hand Hygiene

1) M5 Ridge Regression for Feature Examination: With

covariates defined and associated with the collected sensor

data, we wish to build a linear hypothesis h that (a) accurately

estimates hand hygiene and (b) reports the direction and

degree of effect of our defined features.

In accomplishing (b) we bear in mind two things:

(1) There may be multi-collinearity among features, which

may adversely affect the output.

(2) That (a) and (b) may be at odds with one another;

i.e., obtaining good predictions may entail discarding

some prediction-inhibiting features for which we would

like to obtain effect estimates (in practice, we find that

this is not actually the case).

Therefore, we propose an M5 Ridge Regression for Feature
Examination method designed to accomplish (a) and (b), while

bearing (1) and (2) in mind. This method is given by

h∗ = argmin
h∈Hl

‖Λ(X)h− y‖22 + λ ‖h‖22
s.t. ρ(hj) ≤ .05 ∀ j

(1)

where X ∈ R
n×p is a design matrix, h is the hypothesis, y

is the target vector consisting of compliance rates in which

a particular yi ∈ [0, 1], λ is a regularization term, ‖·‖2
is the �2-norm, and ρ(·) is a function that reports the p-

value of a hypothesis term (this constraint is ensured via

sequential backwards elimination [20]). The function Λ(X)
can be defined as

Λ(X) � argmin{t ∈ THl
} (2)

where t is hypothesis selected from a tree of hypotheses

constructed using the M5 method [21]. Effectively, (2) only

reduces the p dimension, acting as a feature selection method,

and having no bearing on the n dimension.

There are a few benefits of the above method worth pointing

out. First, the hypothesis classHl is linear and common to both

(1) and (2). Two-stage optimization approaches, where the

first objective is optimized, taking into account the hypothesis

class, before the hypothesis itself is optimized for predictive

accuracy (or some other such measure), have been shown to

work well [22]. Secondly, such a method is specifically geared

toward producing a hypothesis that makes use of features
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that have an immediate bearing upon the problem, while

eliminating interpretability obscuring effects, such as multi-

collinearity. Moreover, these desirables are obtained while

attempting to produce the most accurate hypothesis: an h that

elicits feature indicativeness, produces accurate results, and

controls for confounding effects is the goal of this two-step

optimization procedure.

Ultimately, we conduct our analysis by observing the sign

and magnitude of the values in the hypothesis vector in order

to determine the factors that influence hand hygiene compli-

ance, and whether such factors affect compliance in a positive

or negative manner. We also observe correlation and RMSE

values to determine how well our predictive model works, and

whether the corresponding results can be trusted. All results

and are obtained via k-fold cross-validation (k = 10).

2) Supporting Methodology: We also use two estab-

lished/standard techniques – RReliefF feature ranking and

marginal effects modeling – that will serve as a point of

comparison between our method, and also help inform the

discussion of the obtained results1.

Feature ranking: First, we propose the use of the RReliefF

algorithm [25], a modification of the original Relief algorithm

of Kira and Rendell [26]. RReliefF finds a feature j’s weight

by randomly selecting a seed instance xi from design matrix

X and then using that instance’s k nearest neighbors to update

the attribute. This description consists of three terms: the

probability of observing a different rate of hand hygiene

compliance than that of the current value given that of the

nearest neighbors, given by

A = p(rate �= ratexi,j |kNN(xi,j)), (3)

the probability of observing the current attribute value given

the nearest neighbors, given by

B = p(xi,j |kNN(xi,j)), (4)

and the probability of observing a different hand hygiene rate

than the current value given a different feature value v and the

nearest neighbors, given by

C = p(rate �= ratexi,j
|kNN(xi,j) ∧ j = v). (5)

Attribute distance weighting is used in order to place greater

emphasis on instances that are closer to the seed instance when

updating each term; final weights are obtained by applying

Bayes’ rule to the three terms maintained for each attribute,

which can be expressed

C ∗B
A

− (1− C) ∗B
1−A

. (6)

By using this method we could then rank attributes in terms

of their importance. We again report rankings using k-fold

(k = 10) cross validation.

Marginal Effects Modeling: To provide additional insight

into the features that are relevant to hand hygiene we analyzed

1Note that both the LASSO [23] and Elastic Net [24] would have also made
appropriate supporting methods.

their marginal effects [27]. Marginal effects, also referred to as

instantaneous rates of change, are computed by first training

a hypothesis h, then, using the testing data, the effect of each

covariate can be estimated by holding all others constant and

observing the predictions. Such a method can be expressed by

ˆratei,j = h�[xi,j , x̄ �=j ] (7)

where, with a slight abuse of notation, xi,j , the value of

instance i’s jth feature, is added to the vector x̄ �=j , which

consists of the average of each non-j feature, at the appropriate

location (namely, the jth position). Here, the notation �= j is

used to reinforce the fact that the vector of averages x̄ has it’s

jth element replaced by xi,j . Other non-j entries are given by

x̄k = μ(Xk), for an arbitrary index position k.

III. RESULTS

A. Predictive Power: M5 Ridge Regression

We learned a hypothesis using all available features, in-

cluding a nominalized facility identifier. Our predictive results

can be observed in Table II. We note that the RMSE is not

large and the correlation is moderate, implying relatively good

predictive performance.

Measure Value
Correlation 0.3441
RMSE 0.1702

TABLE II: Correlation coefficient and RMSE of cross-

validated model predictions.

B. Examining Hypothesis h∗

We next examine the terms of the learned hypothesis h∗

(see Table III). The model includes all 19 facilities, 12 of

which had positive values, indicating relatively higher rates

of compliance. The size remaining facility’s h∗ terms had

relatively small negative values, indicating lower rates of com-

pliance. Among other features, holidays are associated with

lower compliance rates, while influenza severity has higher

compliance. Weekdays are associated with higher compliance

rates, as are higher temperatures and humidity. Interestingly,

the M5 Ridge Regression model appears to have eliminated

Feature hj

Facility− = {1, 105, 147, 156, 157, 170} hj∈Fac− ∈
[−0.103,−0.016]

Facility+ = {91, 119, 123, 127, 135, 144, hj∈Fac+ ∈
145, 149, 153, 155, 168, 173} [0.008, 0.261]
Air Temp 0.022
Rel. Humid 0.0079
weekday 0.0069
nightShift −0.0218
holiday = {Indep Day, Pres. Day, hj∈Hol

Vet Day,New Year’s,Christmas} [−0.017,−.006]
Flu Severity 0.014
JulyEffect −0.0106

TABLE III: Feature specific hj terms, where red highlights

features with a negative association and blue highlights those

with a positive association.
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some holidays (Martin Luther King day, Memorial day, Labor

day, Columbus day, and Thanksgiving), as well as Facility 163

(the facility with the lowest amount of hand-hygiene data).

This means that these features do not contribute to hand-

hygiene compliance rates in any meaningful way.

C. RReliefF

By using RReliefF we could rank features in terms of

their importance in order to support and supplement the result

obtained using M5 Ridge Regression. The results are reported

in Table IV, where rankings shown are averages for 10-fold

cross-validation. Note that here facility was represented as

a single discretely-valued feature in order to determine the

importance of facility as a whole (instead of treating each

facility as its own feature), as was holiday.

Attribute Avg Val Avg Rank
Facility 0.029(±.001) 1
Flu Sev 0.007 2
Air Temp 0.005 3.3(±0.46)
weekday 0.002 5
Rel. Humid. .001 6.3(±0.64)
JulyEffect ≈ 0.0 7.2(±0.4)
holiday ≈ 0.0 7.8(±1.08)
nightShift ≈ 0.0 8.7(±0.46)

TABLE IV: RReliefF attribute weights.

D. Marginal Effects

The results obtained from modeling the marginal effects can

be observed in Figure 2.

Figures 2a and 2b show the marginal effects of two ran-

domly selected facilities; one identified as being associated

with lower rates of compliance and one identified as having

higher rates of compliance (from Table III). Note that, because

these are binary features (taking on values of either zero or

one), the kernel density of the underlying data is not readily

visible (unlike the other figures, which show results for non-

binary features). As we can see the marginal effects support the

result obtained using both M5 Ridge Regression and RReliefF,

and also seem to suggest an even greater association between

facilities and rates of compliance than was originally apparent

(at least for these two facilities).

Figure 2c shows the marginal effects of flu Severity. The Flu

Severity result shows a slightly positive relationship between

the severity of flu, measured in terms of mortality, and hand-

hygiene compliance rates. This is further supported by the

result obtained from M5 Ridge Regression and the RReliefF

ranking.

Figures 2d and 2e show the marginal effects of humidity

and temperature. The result obtained for both is consistent

with that from M5 Ridge Regression. The lesser effect of

humidity and greater effect of temperature are also reflected

in the RReliefF ranking.

To further explore the relationship between hand-hygiene

and weather effects, we conducted a simple statistical analysis.

For each facility, we selected the temperature and humidity

values corresponding to the bottom 10% and top 10% of hand-

hygiene compliance rates. We then performed a paired t-test

on each set of samples; temperature and humidity values were

scaled to [0, 1]. The results of this analysis are reported in

Table V.

Facility State Temperature Humidity
μtop − μbot (p-val) μtop − μbot (p-val)

91 OH -0.004 (0.750) -0.007 (0.489)
101 OH 0.001 (0.909) 0.004 (0.457)
105 TX 0.041 (< 0.000) -0.028 (0.001)
119 MN -0.008 (0.699) -0.013 (0.337)
123 TX 0.017 (0.002) 0.029 (< 0.000)
127 NM 0.032 (< 0.000) -0.063 (< 0.000)
135 OH -0.045 (0.010) 0.017 (0.278)
144 CA 0.009 (< 0.000) -0.018 (0.002)
145 CA -0.001 (0.675) 0.004 (0.549)
147 CA 0.011 (< 0.000) -0.013 (0.017)
149 CA -0.007 (0.025) 0.008 (0.214)
153 CT 0.043 (< 0.000) -0.003 (0.746)
155 NY 0.093 (< 0.000) 0.012 (0.341)
156 NC 0.040 (0.007) -0.041 (0.445)
157 OH -0.132 (< 0.000) -0.020 (0.638)
163 OH 0.180 (0.010) 0.179 (0.021)
168 PA 0.012 (0.122) 0.071 (0.006)
170 IL -0.001 (0.772) -0.007 (0.642)
173 OH 0.037 (0.003) -0.033 (0.440)

TABLE V: The difference in means and paired t-test p-value

results, obtained by comparing temperature/humidity values

among the bottom 10% and top 10% of hand-hygiene compli-

ance rates, by facility (blue indicates that either temperature,

humidity, or both have a positive difference in means and a

p-value ≤ .05).

Table V shows that most facilities have statistically signif-

icant differences between the two samples and that μtop 10 >
μbottom 10. Such results indicates that higher temperatures and

levels of humidity (particularly temperature) are statistically

associated with higher rates of hand hygiene. However, we find

that some facilities co-located in the same geographic region

have conflicting statistical results (e.g., Facs. 91, 173). We

conjecture that such a result may attributable to differences in

sensor deployment location, but we leave such an investigation

as future work.

E. Facility-Specific Modeling

The full M5 Ridge Regression models’ reliance on facility

identities suggests that compliance relies, at least in part, on

facility-specific health care worker attitudes, administrative

culture, or even simply the disposition of sensors and the archi-

tecture of the facility. Given the magnitude of the coefficients

associated with facilities in the previous model, we propose

to construct and analyze a facility-specific model.

Here, we selected a facility (facility 91) with both a high

rate of compliance and a large number of reported events for

further investigation (see Table VI). As expected, the facility-

specific model is better at predicting compliance than the full

model (Table II), while the correlation is comparable.

The hypothesis terms associated with this model are shown

in Table VII. Unlike the previous model, temperature is
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(a) Facility 91. (b) Facility 101.

(c) Flu Severity.

(d) Humidity. (e) Temperature.

Fig. 2: The marginal effects of several select covariates, where blue shows the kernel density of the original data and the red

lines show the estimation. Rate (y-axis) vs. feature (x-axis). Note that in 2a and 2b no kernel density estimate is provided, as

these plots are for binary features.
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Measure Value
Correlation 0.3179
RMSE 0.0381

TABLE VI: Correlation coefficient and RMSE of a cross-

validated model for Facility 91.

negatively associated with compliance, which is somewhat

surprising. We also note a larger negative association between

compliance and flu severity which, while somewhat harder

to explain, may also reflect the narrower geographic scope

accounted for by this model. Ultimately, only weekday and

humidity positively impact compliance, which is a different

result than in our global model. These differences aren’t

surprising, however: the original model attempts to capture

effects across a broad geographic region, while this model

need only capture the associations found in a specific location.

Feature hj

Air Temp −0.0858
Rel. Humid. 0.0546
Weekday 0.039
Day Shift −0.1742
Flu Sev. −0.2097

TABLE VII: Feature specific hj terms for the Facility 91

model, where red highlights features with a negative asso-

ciation and blue highlights those with a positive association.

IV. DISCUSSION AND FUTURE WORK

In this section we discuss the broader implications of our

findings, as well as directions for future work.

The full model and marginal effects models, in conjunction

with the RReliefF feature ranking, provided several insights.

First, we found that facility identities are strongly related

to compliance, suggesting that facility-wide attitudes towards

hand hygiene exist, persist in time, and are predictive of

compliance rates. This observation may also reflect differences

in sensor installation, where different facilities may have

sensors instrumented in different departments, thus affecting

reported rates. Second, increases in influenza severity were

associated with an increase in compliance, which is encour-

aging. Third, our conjecture regarding lower weekend and

holiday compliance appears to have some merit, although the

holidays associated with negative compliance were somewhat

surprising. We again acknowledge that this result may be

affected by increased visitors during these times. Fourth, our

conjectures that higher humidity and temperature are indicative

of higher rates of compliance were confirmed by the full

model, marginal effects model, and statistical analysis. This

finding is important as health care workers often cite skin

irritation or dry skin as reasons for reduced frequency of hand

hygiene. Fifth, we found that compliance during the first week

of residents’ attendance ran contrary to our original conjecture:

the JulyEffect was essentially unobservable. Finally, we

found that nightShift was associated with slightly lower

compliance rates.

Our facility-specific model (constructed for Facility 91)

found contradictions with the full hypothesis. We believe

that this supports the facility-specific attitudes conjecture and

that, moreover, different factors may be at play at different

facilities spanning different geographical regions. Further work

is needed to tease these differences out, however.

This work has several limitations. First, there are differences

among installations: not all doors and dispensers may be

instrumented and, therefore, we cannot track, for example,

the use of personal alcohol dispensers (we assume stable

practices). Thus our compliance estimates may be based on

partial information and are certainly not comparable across

facilities. Second, our compliance estimates are facility wide,

meaning that we do not exploit the co-location of dispensers

and door event sensors, but only the temporal correlation of

the individual events. Thus, our assumption that each door

event corresponds to a hand-hygiene opportunity may be

fundamentally flawed, even as it allows for consistent intra-

facility comparisons. Third, we acknowledge the possibility of

location and sampling bias with regard to both the sensors and

facilities. If sensors were to be placed in only the ICU of one

facility and in the emergency room of another, we may observe

different rates, which has not been accounted for. Additionally,

though facilities are distributed across the United States, they

are by no means meant to be a representative sample of facility

types or climatic conditions.

There are also a number of opportunities for future work.

First, we would like to consider alternative definitions of

compliance and examine compliance at finer-grained tempo-

ral levels, perhaps incorporating time-series analyses as an

additional avenue of exploration. We intend to also explore

framing the problem as one of classification, rather than only

regression, which may help tease out uncertain factors. Finally,

data pertaining to compliance rates under certain interventions

would give way to exploration of intervention efficacy both

in general and using prediction-based methodology, such as

inverse classification, to recommend facility-specific interven-

tion policies [28], [29].

Hand hygiene compliance is a simple yet effective method

of preventing the transmission of disease, both among the

population at large, and within health care facilities. This study

presents a first look at factors that underlie health care worker

hand-hygiene compliance rates, including weather conditions,

holidays and weekends, and infectious disease prevalence

and severity, and serves as a model for future studies that

will exploit the availability of temporally and spatially rich

compliance data collected by the sophisticated sensor systems

now being put into practice.
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